US009229839B2

a2z United States Patent (10) Patent No.: US 9,229,839 B2
Singh et al. 45) Date of Patent: Jan. 5, 2016
(54) IMPLEMENTING RATE CONTROLS TO (56) References Cited

LIMIT TIMEOUT-BASED FAULTS
U.S. PATENT DOCUMENTS

(71) Applicant: Microsoft Corporation, Redmond, WA 6,526,433 B1* 2/2003 Chang etal. .o 709/201
(as) 7,206,836 B2 4/2007 Dinker et al.
7,493,394 B2* 2/2009 Zavalkovsky etal. 709/225
. . . 7,953,870 B1* 5/2011 Reevesetal. 709/228
(72) Inventors: Al{hlshek Singh, Redmond, WA (Us); 8.639.834 B2* 1/2014 Baratakke et al. .. . 709/232
Srikanth Raghavan, Sammamish, WA 2002/0152446 Al* 10/2002 Fleming 714/815
(US); Ajay Mani, Woodinville, WA 2008/0082142 A1* 4/2008 Clarketal.cccccoee. 607/60
(US); Saad Syed, Redmond, WA (US) 2010/0211959 Al* 82010 Chanetal. 718/107
’ ’ ’ 2011/0106940 Al* 5/2011 Chauvinetal. ... <. 709/224
2013/0031424 Al* 1/2013 Srivastava et al. 714/47.2
(73) Assignee: Microsoft Technology Licensing, LL.C, 2013/0124752 Al* 52013 Griffith etal. 709/235
Redmond, WA (US) 2014/0101419 AL* 4/2014 Giddi coovvcovroooeeeerrreee 713/1
OTHER PUBLICATIONS
(*) Notice: SUbjeCt. to any diSCIaimer{ the term of this Xiong, et al., “A Self-tuning Failure Detection Scheme for Cloud
patent is extended or adjusted under 35 Computing Service”, In Proceedings of IEEE 26th International Par-
U.S.C. 154(b) by 42 days. allel and Distributed Processing Symposium, May 21, 2012, 12
pages.
(21) Appl. No.: 13/737,430 (Continued)
(22) Filed: Jan. 9. 2013 Primary Examiner — Marc Duncan
’ (74) Attorney, Agent, or Firm — Ben Tabor; Harri Valio;
Micky Minhas
(65) Prior Publication Data ky
57 ABSTRACT

US 2014/0195861 Al Jul. 10,2014
Embodiments are directed to implementing rate controls to

limit faults detected by timeout and to learning and adjusting

(51) Int.CL an optimal timeout value. In one scenario, a computer system
GO6F 11/00 (2006.01) identifies cloud components that have the potential to fail

GO6F 11/34 (2006.01) within a time frame that is specified by a timeout value. The

GOGF 11/07 (2006.01) computer system establishes anumber of components that are

(52) US.CL allowed to fail during the time frame specified by the timeout
CPC ... GOG6F 11/3466 (2013.01); GO6F 11/076 value and further determines that the number of component
(2013.01); GO6F 11/0757 (2013.01) failures within the time frame specified by the timeout value

(58) Field of Classification Search has exceeded the established number of components that are
CPC o GO6F 11/0757; GO6F 11/076; GOGF allowed to fail. In response, the computer system increases

11/0709; GOGF 11/3006; GOGF 11/3048: the timeout value by a specified amount of time to ensure that
GOGF 11/3466 fewer than or equal to the established number of components

USPC oo 714/47.2, 55,704, 703 fail within the time frame specified by the timeout value.
See application file for complete search history. 20 Claims, 5 Drawing Sheets
$7%
210~
Identify Cloud Compenents That

May Fail Within A Time Frame

20—~ i

Establish A Number Of Components That
Are Allowed To Fail During Time Frame

220~ i

Determine That The Number Of Component
Failures Has Exceeded A Threshold Number

o I

Increase Timeout Value To Ensure That Failures
Are Below The Established Number Of Failures

US 9,229,839 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Abmar Grangeiro De Barros, “ZooKeeper Failure Detector Model”,
Retrieved on: Nov. 2, 2012, Available at: https://cwiki.apache.org/
ZOOKEEPER/gsocfailuredetector.data/gsoc-zookeeper-
failuredetector.pdf.

Nunes, Raul Ceretta, “Self-Tuned Failure Detector”, Retrieved on:
Nov. 2, 2012, Available at: http://www.dsc.ufcg.edu.br/~fubica/pa-
pers/FD/Nunes2001 .pdf.

De Sa, etal., “QoS Self-Configuring Failure Detectors for Distributed
Systems”, In 10th IFIP International Conference on Distributed

Applications and Interoperable Systems, vol. 6115, Jun. 7, 2010, 14
pages.

Ren, et al., “Low-Overhead Accrual Failure Detector”, In Proceed-
ings of Sensors 2012, vol. 12, Issue 5, May 4, 2012, 9 pages.

Dixit, et al., “Timeout-Based Adaptive Consensus: Improving Per-
formance through Adaptation”, In Proceedings of the 27th Annual
ACM Symposium on Applied Computing SAC, Mar. 22, 2012, 6
pages.

Al-Shishtawy, Ahmad, “Self-Management for Large-Scale Distrib-
uted Systems”, Retrieved on: Nov. 2, 2012, Available at: http://www.
diva-portal.org/smash/get/diva2:548547/FULLTEXTO1.

* cited by examiner

US 9,229,839 B2

Sheet 1 of 5

Jan. 5, 2016

U.S. Patent

} a4nbi4

Aiday
Buuouop

L84

1s8nbay
Bunojuopy

sjusuodwo)
aleMy0s

eS| Uy

sjuauodwion
alempIeH

sjusuodwo? pnojn

poIo
e

5

00}

J

GeL
| _—» anpoyy Buuonuop
lg|jonuo
08} loguod did
ainpojy Bunsnipy
G}~ anjeA Jnoswi|
ainpopy Buiwiae
07} {NPOJN Bululwisieq
o4 0L
pamoly Sjuauodwio)
9t JO JoquinN
8{NPON
GlL ainjie4 uauodwion
¢t
E
L anjeA 1noawI|
ainpo Buikinuapy
0L}~ Jusuodwo) pnoj

TOT walsAg Jandwon

(o

904

G0+

U.S. Patent Jan. 5,2016 Sheet 2 of 5 US 9,229,839 B2

200

P

Identify Cloud Components That
May Fail Within A Time Frame

220 —~

Establish A Number Of Components That
Are Allowed To Fail During Time Frame

230 ~

Determine That The Number Of Component
Failures Has Exceeded A Threshold Number

240 —

Increase Timeout Value To Ensure That Failures
Are Below The Established Number Of Failures

Figure 2

U.S. Patent Jan. 5,2016 Sheet 3 of 5 US 9,229,839 B2

300

A

310 ~

Monitor Number Of Failures That Occur Due To Timeout

320 —~

Determine That Timeout Value Is Improper

330 ~

Adjust Timeout Value To Ensure A Specified
Number Of Failures Or Fewer

Figure 3

U.S. Patent

Jan. 5§, 2016

Sheet 4 of 5

S Timeout Value 5‘451

US 9,229,839 B2

Cloud A Components
Hardware Software
Components Components
e 453 2 454

~-452

Figure 4A

US 9,229,839 B2

Sheet 5 of 5

Jan. 5, 2016

U.S. Patent

gy ainbi4
257y
296Gy Jusuodwo)
2573 2573 SIEMpEH 2573
T¥SF Q9PON —
U0 SUBUOdWOD) PGP Jueuodwod TESH 1usuodwo) TVESF Jusuodwo)
SIEMYOS [IV SIEM)OS alempieH alempey]
v Poio) v PNoiy)

dseneA
digr~ noswi|

O onfep
2187~ noswi|

g SnjeA
g187~ noswi|

Y SNeA
ViGy~ jnoswil

u Koljod u

05y

US 9,229,839 B2

1
IMPLEMENTING RATE CONTROLS TO
LIMIT TIMEOUT-BASED FAULTS

BACKGROUND

Computers have become highly integrated in the work-
force, in the home, in mobile devices, and many other places.
Computers can process massive amounts of information
quickly and efficiently. Software applications designed to run
on computer systems allow users to perform a wide variety of
functions including business applications, schoolwork, enter-
tainment and more. Software applications are often designed
to perform specific tasks, such as word processor applications
for drafting documents, or email programs for sending,
receiving and organizing email.

In some cases, software applications are hosted and pro-
vided via a network of computing systems generally known
as “the cloud.” These applications may have many different
components, running on many different computing nodes
within the cloud. Each of the components has one or more
dependencies on other hardware or software components. As
such, each cloud-hosted application may have many different
points of failure, whether hardware- or software-related.

BRIEF SUMMARY

Embodiments described herein are directed to implement-
ing rate controls to limit faults detected by timeout and to
learning and adjusting an optimal timeout value. In one
embodiment, a computer system identifies cloud components
that have the potential to fail within a time frame that is
specified by a timeout value. The computer system estab-
lishes a number of components that are allowed to fail during
the time frame specified by the timeout value and further
determines that the number of component failures within the
time frame specified by the timeout value has exceeded the
established number of components that are allowed to fail. In
response, the computer system increases the timeout value by
a specified amount of time to ensure that fewer than or equal
to the established number of components fail within the time
frame specified by the timeout value.

In another embodiment, a computer system learns and
adjusts an optimal timeout value. The computer system moni-
tors a number of failures that occur due to timeout during a
specified timeframe, where the timeouts are defined by a
timeout value. The computer system determines that the tim-
eout value is too high or too low based on the determined
number of failures that occurred due to timeout during the
specified timeframe and, in response, adjusts the timeout
value to ensure that fewer than or equal to a specified number
of failures occur during the specified timeframe.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

Additional features and advantages will be set forth in the
description which follows, and in part will be apparent to one
of ordinary skill in the art from the description, or may be
learned by the practice of the teachings herein. Features and
advantages of embodiments described herein may be realized
and obtained by means of the instruments and combinations
particularly pointed out in the appended claims. Features of

20

25

40

45

60

2

the embodiments described herein will become more fully
apparent from the following description and appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify the above and other features of the
embodiments described herein, a more particular description
will be rendered by reference to the appended drawings. It is
appreciated that these drawings depict only examples of the
embodiments described herein and are therefore not to be
considered limiting of its scope. The embodiments will be
described and explained with additional specificity and detail
through the use of the accompanying drawings in which:

FIG. 1illustrates a computer architecture in which embodi-
ments described herein may operate including implementing
rate controls to limit faults detected by timeout.

FIG. 2 illustrates a flowchart of an example method for
implementing rate controls to limit faults detected by timeout.

FIG. 3 illustrates a flowchart of an example method for
learning and adjusting an optimal timeout value.

FIGS. 4A-4B illustrate embodiments in which policy con-
trols timeout values for different hardware and software com-
ponents.

DETAILED DESCRIPTION

Embodiments described herein are directed to implement-
ing rate controls to limit faults detected by timeout and to
learning and adjusting an optimal timeout value. In one
embodiment, a computer system identifies cloud components
that have the potential to fail within a time frame that is
specified by a timeout value. The computer system estab-
lishes a number of components that are allowed to fail during
the time frame specified by the timeout value and further
determines that the number of component failures within the
time frame specified by the timeout value has exceeded the
established number of components that are allowed to fail. In
response, the computer system increases the timeout value by
a specified amount of time to ensure that fewer than or equal
to the established number of components fail within the time
frame specified by the timeout value.

In another embodiment, a computer system learns and
adjusts an optimal timeout value. The computer system moni-
tors a number of failures that occur due to timeout during a
specified timeframe, where the timeouts are defined by a
timeout value. The computer system determines that the tim-
eout value is too high or too low based on the determined
number of failures that occurred due to timeout during the
specified timeframe and, in response, adjusts the timeout
value to ensure that fewer than or equal to a specified number
of failures occur during the specified timeframe.

The following discussion now refers to a number of meth-
ods and method acts that may be performed. It should be
noted, that although the method acts may be discussed in a
certain order or illustrated in a flow chart as occurring in a
particular order, no particular ordering is necessarily required
unless specifically stated, or required because an act is depen-
dent on another act being completed prior to the act being
performed.

Embodiments described herein may comprise or utilize a
special purpose or general-purpose computer including com-
puter hardware, such as, for example, one or more processors
and system memory, as discussed in greater detail below.
Embodiments described herein also include physical and
other computer-readable media for carrying or storing com-
puter-executable instructions and/or data structures. Such

US 9,229,839 B2

3

computer-readable media can be any available media that can
be accessed by a general purpose or special purpose computer
system. Computer-readable media that store computer-ex-
ecutable instructions in the form of data are computer storage
media. Computer-readable media that carry computer-ex-
ecutable instructions are transmission media. Thus, by way of
example, and not limitation, embodiments described herein
can comprise at least two distinctly different kinds of com-
puter-readable media: computer storage media and transmis-
sion media.

Computer storage media includes RAM, ROM, EEPROM,
CD-ROM,; solid state drives (SSDs) that are based on RAM,
Flash memory, phase-change memory (PCM), or other types
of memory, or other optical disk storage, magnetic disk stor-
age or other magnetic storage devices, or any other medium
which can be used to store desired program code means in the
form of computer-executable instructions, data or data struc-
tures and which can be accessed by a general purpose or
special purpose computer.

A “network” is defined as one or more data links and/or
data switches that enable the transport of electronic data
between computer systems and/or modules and/or other elec-
tronic devices. When information is transferred or provided
over a network (either hardwired, wireless, or a combination
of hardwired or wireless) to a computer, the computer prop-
erly views the connection as a transmission medium. Trans-
mission media can include a network which can be used to
carry data or desired program code means in the form of
computer-executable instructions or in the form of data struc-
tures and which can be accessed by a general purpose or
special purpose computer. Combinations of the above should
also be included within the scope of computer-readable
media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a network interface card or “NIC”), and then
eventually transferred to computer system RAM and/or to
less volatile computer storage media at a computer system.
Thus, it should be understood that computer storage media
can be included in computer system components that also (or
even primarily) utilize transmission media.

Computer-executable (or computer-interpretable) instruc-
tions comprise, for example, instructions which cause a gen-
eral purpose computer, special purpose computer, or special
purpose processing device to perform a certain function or
group of functions. The computer executable instructions
may be, for example, binaries, intermediate format instruc-
tions such as assembly language, or even source code.
Although the subject matter has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described
features or acts described above. Rather, the described fea-
tures and acts are disclosed as example forms of implement-
ing the claims.

Those skilled in the art will appreciate that various embodi-
ments may be practiced in network computing environments
with many types of computer system configurations, includ-
ing personal computers, desktop computers, laptop comput-
ers, message processors, hand-held devices, multi-processor
systems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-

10

20

40

45

60

4

puters, mobile telephones, PDAs, tablets, pagers, routers,
switches, and the like. Embodiments described herein may
also be practiced in distributed system environments where
local and remote computer systems that are linked (either by
hardwired data links, wireless data links, or by a combination
ot hardwired and wireless data links) through a network, each
perform tasks (e.g. cloud computing, cloud services and the
like). In a distributed system environment, program modules
may be located in both local and remote memory storage
devices.

In this description and the following claims, “cloud com-
puting” is defined as a model for enabling on-demand net-
work access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services). The definition of “cloud computing” is not limited
to any of the other numerous advantages that can be obtained
from such a model when properly deployed.

For instance, cloud computing is currently employed in the
marketplace so as to offer ubiquitous and convenient on-
demand access to the shared pool of configurable computing
resources. Furthermore, the shared pool of configurable com-
puting resources can be rapidly provisioned via virtualization
and released with low management effort or service provider
interaction, and then scaled accordingly.

A cloud computing model can be composed of various
characteristics such as on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, measured ser-
vice, and so forth. A cloud computing model may also come
in the form of various service models such as, for example,
Software as a Service (“SaaS”), Platform as a Service
(“PaaS”), and Infrastructure as a Service (“IaaS™). The cloud
computing model may also be deployed using different
deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In this description
and in the claims, a “cloud computing environment” is an
environment in which cloud computing is employed.

Additionally or alternatively, the functionally described
herein can be performed, at least in part, by one or more
hardware logic components. For example, and without limi-
tation, illustrative types of hardware logic components that
can be used include Field-programmable Gate Arrays (FP-
GAs), Program-specific Integrated Circuits (ASICs), Pro-
gram-specific Standard Products (ASSPs), System-on-a-chip
systems (SOCs), Complex Programmable Logic Devices
(CPLDs), and other types of programmable hardware.

Still further, system architectures described herein can
include a plurality of independent components that each con-
tribute to the functionality of the system as a whole. This
modularity allows for increased flexibility when approaching
issues of platform scalability and, to this end, provides a
variety of advantages. System complexity and growth can be
managed more easily through the use of smaller-scale parts
with limited functional scope. Platform fault tolerance is
enhanced through the use of these loosely coupled modules.
Individual components can be grown incrementally as busi-
ness needs dictate. Modular development also translates to
decreased time to market for new functionality. New func-
tionality can be added or subtracted without impacting the
core system.

FIG. 1 illustrates a computer architecture 100 in which at
least one embodiment may be employed. Computer architec-
ture 100 includes computer system 101. Computer system
101 may be any type of local or distributed computer system,
including a cloud computing system. The computer system
includes modules for performing a variety of different func-
tions. For instance, the cloud component identifying module
110 may identify components of cloud 140. These cloud

US 9,229,839 B2

5

components 141 may include hardware components 142 (e.g.
processors, memory, hard drives, network cards, mother-
boards, peripheral devices, power supplies, routers, switches
or other computer- or networking-related hardware), and/or
software components 143 (e.g. applications, functions, meth-
ods, workflows, virtual machines (VMs) or other software-
related components). In some cases, the cloud component
identifying module 110 may be configured to identify any
hardware or software components that have the potential of
failing in their operation.

In a massively distributed system like cloud 140, failures
(hardware or software) are bound to happen. Many such
failures are timeout-based, meaning that if a component is
unresponsive or is taking longer than a specified time, the task
times out. Accordingly, many hardware and software compo-
nents will be identified as faulty after a certain amount of time
has elapsed. Falsely identifying a component as faulty (i.e. a
“false positive”) can lead to more harm than good. In cloud
140 (and with substantially any cloud), hardware and soft-
ware components are interdependent. As such, timeout values
cannot be set too aggressively. If they are too short, a large
number of non-faulty components might be identified as
being faulty. Moreover, timeout values can change over time
due to changes in hardware, network conditions or other
factors.

Embodiments described herein provide methods for adap-
tively and safely setting timeout values while limiting the
number of false positives. Embodiments also set and adjust
the number of retries (i.e. the number of times a restart is
attempted for a component) for any particular hardware or
software component. In some scenarios, for example, retries
may be beneficial, while in others they may not. The nature of
the processing load, or the nature of the failure may dictate
whether (or how many) retries are to be attempted.

Rate controls may be implemented to handle timeouts and
retries, as well as adapt them to a dynamic system. For tim-
eouts, the number of faults detected by the component failure
module 115 (e.g. due to timeout) may be limited, for example,
to arate of X per day, where X is a variable or fixed amount.
In such cases, if more than X faults are detected due to
timeout, then they are ignored as the rate control has been hit.
Once the rate control has been hit, it is implicit that the
timeout value (e.g. 111) needs to be increased. A new, larger
value for the timeout is chosen by a user, by policy, by another
software application, or by using a feedback controller such
as a proportional-integral-derivative (PID) controller. Alter-
natively, the new, (larger) timeout value may be selected by
measuring the fraction of actions where the timeout value was
hit. In yet other cases, the new, (larger) timeout value may be
chosen by implementing a parallel hypothesis testing system,
that, for example, increases the timeout value to 2x, and
chooses a specified number of actions with the timeout per
day, and checks how many actually fail and how many suc-
ceed.

For retries, the number of retries may be chosen at some
reasonable value (e.g. Y) and the probability of success is
measured. A rate Z may be chosen per time period to try Y+1
retries on Z operations a day. If that increases the probability
of success, the retry count may be increased to y+1. If the
chosen value results in poor performance (i.e. the rate control
is hit very soon), it may lead to reduced system functionality.
As such, a safe timeout value may be selected that is large
enough to ensure that the number of faults will be fewer than
the rate control. The components may then be restarted with
that timeout value. This safe timeout value may delay recov-
ery, but keeps the functionality of timeout detection active
even after the rate control is hit.

10

15

20

25

30

35

40

45

50

55

60

65

6

As will be described further below, the number of false
positives is bounded by the rate control. Accordingly, even if
a bad initial timeout value is chosen, its impact is limited by
the rate control. The rate control itself may be rate controlled
by an even smaller rate that increases the search space for the
timeouts/retries, and assists in continual adjustment of the
timeout value to minimize the time needed to identify a fail-
ure. In one example, minimizing timeouts or retries may be
performed as follows: suppose for a given day, that user 105
is willing to recover 10 out of 1000 slow starting components
(e.g. cloud components 141). Instead of analyzing data to find
the best possible timeout, the user or the computer system 101
can pick a reasonable timeout value 111, and check if this
timeout results in more than 10 faults in that day. If it does,
then the timeout value adjusting module 125 increases the
timeout value by a certain amount. This example thus allows
timeout values to be adjusted and adapted, minimizes timeout
values whenever possible, automatically adjusts to changing
conditions, limits the number of false positives, and is simple
to specify and test. These concepts will be explained further
below with regard to methods 200 and 300 of FIGS. 2 and 3,
respectively.

In view of the systems and architectures described above,
methodologies that may be implemented in accordance with
the disclosed subject matter will be better appreciated with
reference to the flow charts of FIGS. 2 and 3. For purposes of
simplicity of explanation, the methodologies are shown and
described as a series of blocks. However, it should be under-
stood and appreciated that the claimed subject matter is not
limited by the order of the blocks, as some blocks may occur
in different orders and/or concurrently with other blocks from
what is depicted and described herein. Moreover, not all
illustrated blocks may be required to implement the method-
ologies described hereinafter.

FIG. 2 illustrates a flowchart of a method 200 for imple-
menting rate controls to limit faults detected by timeout. The
method 200 will now be described with frequent reference to
the components and data of environment 100.

Method 200 includes an act of identifying one or more
cloud components that have the potential to fail within a time
frame that is specified by a timeout value (act 210). For
example, cloud component identifying module 110 may iden-
tify any of cloud hardware components 142 or cloud software
components 143. As mentioned above, the hardware and soft-
ware components may include any type of hardware or soft-
ware, on substantially any level of granularity. For instance,
hardware components 142 may include individual hardware
components such as processors, or entire computer systems
such as blades. Likewise, software components 143 may
include individual processes, workflows or methods, or may
include entire software applications or virtual machines. The
identified components may include any combination of cloud
components 141. This combination may come from one com-
puter system or from multiple different computer systems in
the same cloud or in different clouds.

Method 200 also includes an act of establishing a number
of components that are allowed to fail during the time frame
specified by the timeout value (act 220). For example, com-
ponent failure module 115 may establish that five hardware
components or ten software components 116 are allowed to
fail during a time frame 112 (e.g. one minute, one hour, one
day, one week, one month, etc.) specified by a timeout value
111. This timeout value may be determined by a user, by a
software application, by policy or through some other means.
In some cases, user 105 may indicate (using input 106) how
many failures are allowed for a particular cloud, for a particu-
lar computer system or for a particular component.

US 9,229,839 B2

7

In some cases, the established number of components that
are allowed to fail during a given time frame is based on or is
influenced by a value that indicates a number of cloud com-
ponents that failed over a period of time. For instance, when
determining a safe timeout value that is large enough to
ensure that the number of faults will be fewer than a specified
rate control, a number higher than the highest number of
reported failures may be used. This higher number may
include an added buffer value that ensures that a sufficiently
high timeout value is in place to prevent more than the
allowed number of components from failing.

Method 200 further includes an act of determining that the
number of component failures within the time frame specified
by the timeout value has exceeded the established number of
components that are allowed to fail (act 230). The determin-
ing module 120 may determine that the number of component
failures has exceeded the established number of components
that are allowed to fail by monitoring the identified cloud
components 141 wusing cloud component monitoring
requests. For instance, monitoring module 135 may send
monitoring request 136 to any one or more of the cloud
computing systems of cloud 140. If the components of these
cloud computing systems do not send a monitoring reply
message 137 back to the monitoring module 135, then the
monitoring module may determine that the component or
node is unresponsive or that a network error has occurred,
preventing transfer of the monitoring reply. These monitoring
requests may be sent to the identified cloud components as
requested by a user, or on a scheduled basis according to a
specified schedule. The schedule may be established by the
user 105 or by another application or workflow.

Method 200 includes an act of increasing the timeout value
by a specified amount of time to ensure that fewer than or
equal to the established number of components fail within the
time frame specified by the timeout value (act 240). The
timeout value adjusting module 125 may thus adjust the tim-
eout value 111 higher to ensure that fewer components fail
due to timeout. This will prevent the number of failed com-
ponents from reaching the established rate control. This value
may be adjusted up as far as is needed to prevent the rate
control from being reached. After the number of failures has
subsided, over time, the timeout value may be reduced in a
controlled manner.

Thus, in some cases, the determining module 120 may
determine that the number of component failures within the
time frame specified by the timeout value is below the estab-
lished number of components that are allowed to fail. The
timeout value adjusting module 125 may decrease the timeout
value by a specified amount of time that still ensures that
fewer than or equal to the established number of components
fail within the time frame 112 specified by the timeout value
111. The timeout value may be adjusted (either up or down)
using a proportional-integral-derivative (PID) controller 130.

The number of components that are allowed to fail during
the time frame specified by the timeout value may be dynami-
cally adjusted over time. In some cases, a string of failures
may lead the timeout value to be increased to reduce the
number of timeout failures. On the other hand, an extended
period without failures may lead the timeout value 111 to be
reduced, thus allowing actual errors to be attended to quickly.
Thus, the number of components that are allowed to fail may
be dynamically adjusted to minimize the timeout value while
ensuring that fewer than or equal to the established number of
components fail within the time frame specified by the tim-
eout value.

Increasing the timeout value by a specified amount of time
to ensure that fewer than or equal to the established number of

20

40

45

65

8

components fail within the time frame specified by the tim-
eout value may prevent cascading component failures. As
many cloud components 141 are interdependent, a failure of
one component may affect another component, and so on
down the line. If a non-faulty node is taken down because a
short timeout value has indicated a timeout for that node, then
other nodes dependent on that node may be aftected. Accord-
ingly, the timeout value may be increased to prevent cascad-
ing failures. The timeout value may be adjusted at specified
time intervals (e.g. hourly, daily, weekly, etc.), or may be
adjusted based on an established cloud management updating
policy.

FIG. 3 illustrates a flowchart of a method 300 for learning
and adjusting an optimal timeout value. The method 300 will
now be described with frequent reference to the components
and data of environments 100 and 400 of FIGS. 1 and 4,
respectively.

Method 300 includes an act of monitoring a number of
failures that occur due to timeout during a specified time-
frame, the timeouts being defined by a timeout value (act
310). For example, monitoring module 135 may monitor the
number of failures that occur due to timeouts for cloud com-
ponents 141. The timeout value may be based on monitored
time distributions for any of the following: application
deployments, application updates, virtual machine migra-
tions, node power-downs or other operations. The timeout
value may be initially selected using average timeout values
for each of the operations. The timeout values may then be
adjusted based on the number of failures that are being
reported due to timeout.

In some cases, a timeout value may apply to all hardware
and software components for a given cloud, while in other
cases, a separate timeout value may be specified for each
identified cloud component. As shown in FIG. 4A, a policy
450 may indicate a timeout value 451 for each of cloud A
components 452, including hardware components 453 and
software components 454. Alternatively, as shown in FIG.
4B, a policy 450 may indicate a different timeout value for
each component. For instance, timeout value A (451A) may
be for a specific hardware component 453A1 among cloud
A’s components 452. Timeout value B (451B) may specify
the same or different timeout values for the various different
hardware components (453B1 and 453B2) of cloud A’s com-
ponents 452. Timeout value C (451C) may specify timeout
values for a specific software component 454C, and timeout
value D (451D) may specify timeout values for all of the
software components 454D on a given node (e.g. Node D).
Accordingly, a policy may include one or many different
timeout values. The timeout values may apply to single hard-
ware or software components or to multiple different groups
of hardware or software components. Each timeout value
may updated individually accordingly to a specified schedule
(which itself may be specified in the policy 450) such as at
specified time intervals, or may be adjusted manually as input
by the user.

Method 300 further includes an act of determining that the
timeout value is too high or too low based on the determined
number of failures that occurred due to timeout during the
specified timeframe (act 320). Thus, if the determining mod-
ule 120 determines that the timeout value is too high (e.g.
because the specified numbers per timeframe hit the rate
control), then the timeout value will be increased. Accord-
ingly, method 300 includes an act of adjusting the timeout
value to ensure that fewer than or equal to a specified number
of failures occur during the specified timeframe (act 330).
The rate control thus ensures that only a specified number of
failures occur within the given timeframe 112. Moreover,

US 9,229,839 B2

9

actions taken based on determinations of failure (such as
powering down or rebooting a node) may be monitored and
limited to prevent cascading failures. The timeout value
adjusting module 125 may operate substantially autono-
mously, thus ensuring that the cloud components (and thus
the cloud itself) do not create more timeout faults than the
system can handle, and further ensures that the system can
recover from smaller failures by preventing cascading fail-
ures.

Accordingly, methods, systems and computer program
products are provided which implement rate controls to limit
faults detected by timeout. Moreover, methods, systems and
computer program products are provided which learn optimal
timeout values and adjust them accordingly.

The concepts and features described herein may be embod-
ied in other specific forms without departing from their spirit
or descriptive characteristics. The described embodiments
are to be considered in all respects only as illustrative and not
restrictive. The scope of the disclosure is, therefore, indicated
by the appended claims rather than by the foregoing descrip-
tion. All changes which come within the meaning and range
of equivalency of the claims are to be embraced within their
scope.

We claim:

1. A computer system comprising the following:

one Or more processors;

system memory;

one or more computer-readable storage media having

stored thereon computer-executable instructions that are
executable by the one or more processors to cause the
computing system to implement rate controls to limit
faults detected by timeout and to instantiate the follow-
ing;

amonitor module that identifies one or more hardware or
software components that have a potential to experi-
ence a timeout-based failure within a time frame,
wherein the timeout-based failure is a failure in which
the one or more hardware or software components is
unresponsive for a specified time or takes longer to
perform a task than the specified time, wherein the
specified time is specified by a timeout value;

a component failure module that establishes a number of
timeout-based failures the one or more hardware or
software components are allowed to suffer during the
time frame;

adetermining module that determines that the number of
timeout-based failures suffered by the one or more
hardware or software components within the time
frame has exceeded the established number; and

atimeout value adjusting module that increases the tim-
eout value by a specified amount of time to ensure that
fewer than or equal to the established number of tim-
eout-based failures occur within the time frame.

2. The computer system of claim 1, wherein the established
number is based on a value that indicates a number of cloud
components that failed over a period of time.

3. The computer system of claim 2, wherein the established
number is based on the value plus a buffer value.

4. The computer system of claim 1, wherein the computer-
executable instructions are further configured, when
executed, to cause the computing system to determine

that the number of timeout-based failures suffered by the

one or more hardware or software components within

the time frame is below the established number; and

to decrease the timeout value by a specified amount of time.

10

15

20

25

30

35

40

45

55

60

65

10

5. The computer system of claim 4, wherein a proportional-
integral-derivative (PID) controller is used to decrease the
timeout value.

6. The computer system of claim 4, wherein the timeout
value is dynamically adjusted over time.

7. The computer system of claim 6, wherein the timeout
value is dynamically adjusted to minimize the timeout value
while ensuring that fewer than or equal to the established
number of timeout-based failures suffered by the one or more
hardware or software components occur within the time
frame.

8. The computer system of claim 1, wherein increasing the
timeout value by a specified amount of time to ensure that
fewer than or equal to the established number of timeout-
based failures suffered by the one or more hardware or soft-
ware components occur within the time frame prevents one or
more cascading component failures.

9. The computer system of claim 1, wherein the determin-
ing module determines that the number of timeout-based
failures has exceeded the established number in response to
the monitoring module monitoring one or more hardware or
software cloud components using cloud component monitor-
ing requests.

10. The computer system of claim 9, wherein the monitor-
ing requests are sent to the one or more hardware or software
cloud components on a scheduled basis according to a speci-
fied schedule.

11. The computer system of claim 10, wherein the specified
schedule is based on a user-established policy.

12. The computer system of claim 10, wherein the timeout
value is adjusted at specified time intervals.

13. The computer system of claim 12, wherein the specified
time intervals for adjusting the timeout value are listed in a
cloud management policy.

14. The computing system of claim 1, wherein the com-
puter system adjusts a number of retries that are permitted to
occur for the one or more hardware or software components,
each retry comprising an attempted restart for a correspond-
ing hardware or software component.

15. A computer system comprising the following:

one or More processors;

system memory,

one or more computer-readable storage media having

stored thereon computer-executable instructions that are

executable, by the one or more processors to cause, the
computing system to perform learning and adjusting of

a timeout value and to instantiate, the following:

a monitor module that monitors a number of timeout-
based failures of one or more hardware or software
components that occur due to timeout during a speci-
fied timeframe, the timeouts being defined by the
timeout value, and wherein the timeout value is based
on monitored time distributions for at least one of the
following: application deployments, application
updates, virtual machine migrations or node power-
downs;

a determining module that determines that the timeout
value is too high or too low based on the determined
number of timeout-based failures that occurred due to
timeout during the specified timeframe; and

a timeout value adjusting module that adjusts the tim-
eout value to ensure that fewer than or equal to a
specified number of timeout-based failures occur dur-
ing the specified timeframe.

16. The computer system of claim 15, wherein different
component-specific timeout values are specified for a plural-
ity of different components.

US 9,229,839 B2

11

17. The computer system of claim 16, wherein the compo-
nent-specific timeout values are adjusted according to a speci-
fied time interval.

18. The computer system of claim 17, wherein the compo-
nent-specific timeout values are adjusted manually based on
user input.

19. The computing system of claim 15, wherein the com-
puter system adjusts a number of retries that are permitted to
occur during the specified timeframe.

20. A computer system comprising the following:

one Or more processors;

system memory;

one or more computer-readable storage media having

stored thereon computer-executable instructions that are

executable, by the one or more processors to cause the

computing system to perform a method for learning and

adjusting a timeout value and to instantiate the follow-

ing:

a monitor module that monitors one or more hardware or
software components for a number of hardware or
software timeout-based failures of the one or more

10

15

12

hardware or software components that occur due to
timeout during a specified timeframe, each of the
timeout-based failures comprising a failure in which
the one or more hardware or software components is
unresponsive for a specified time or takes longer to
perform a task than the specified time, wherein the
specified time is by the timeout value;

a determining module that determines that the timeout
value is too high or too low based on the determined
number of failures that occurred due to timeout during
the specified timeframe; and

a timeout value adjusting module that adjusts the tim-
eout value to ensure that fewer than or equal to a
specified number of failures occur during the speci-
fied timeframe; and

wherein the computer system adjusts a number of retries
that are permitted to occur for the one or more hard-
ware or software components, each retry comprising
an attempted restart for a corresponding hardware or
software component.

#* #* #* #* #*

